Efficient Symmetric Boundary Condition for Galerkin Finite Volume Solution of 3D Temperature Field on Tetrahedral Meshes

نویسندگان

  • SAEED-REZA SABBAGH-YAZDI
  • NIKOS E. MASTORAKIS
چکیده

In some of the engineering problems, it is necessary to analyze the three-dimensional temperature profiles. In order to solve a typical problem numerically, the three-dimensional temperature diffusion equation is chosen as the mathematical model. The finite volume formulation is derived using Galerkin approach for the mesh of tetrahedral elements, which facilitates solving temperature problems with complicated geometries. In this approach, the Poisson equation is multiplied by the piece wise linear shape function of tetrahedral element and integrated over the control volumes which are formed by gathering all the elements meeting every computational node. The linear shape functions of the elements vanish by some mathematical manipulations and the resulted formulation can be solved explicitly for each computational node. The algorithm not only is able to handle the essential boundary conditions but also the natural boundary conditions using a novel technique. Accuracy and efficiency of the algorithm is assessed by comparison of the numerical results for a bench mark problem of heat generation and transfer in a block with its analytical solution. Then, introduced technique for imposing natural boundary conditions on unstructured tetrahedral mesh is examined for cases with inclined symmetric boundaries. Key-Words: Numerical Simulation of Heat Transfer, Galerkin Finite Volume Method, Symmetric Boundary Conditions

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A staggered space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes

We propose a novel arbitrary high order accurate semi-implicit space-time discontinuous Galerkin method for the solution of the three-dimensional incompressible Navier-Stokes equations on staggered unstructured curved tetrahedral meshes. The scheme is based on the general ideas proposed in [1] for the two dimensional incompressible Navier-Stokes equations and is then extended to three space dim...

متن کامل

Modified Fixed Grid Finite Element Method to Solve 3D Elasticity Problems of Functionally Graded Materials

In the present paper, applicability of the modified fixed grid finite element method in solution of three dimensional elasticity problems of functionally graded materials is investigated. In the non-boundary-fitted meshes, the elements are not conforming to the domain boundaries and the boundary nodes which are used in the traditional finite element method for the application of boundary condit...

متن کامل

hp-Version Discontinuous Galerkin Finite Element Method for Semilinear Parabolic Problems

We consider the hp–version interior penalty discontinuous Galerkin finite element method (hp–DGFEM) for semilinear parabolic equations with mixed Dirichlet and Neumann boundary conditions. Our main concern is the error analysis of the hp–DGFEM on shape–regular spatial meshes. We derive error bounds under various hypotheses on the regularity of the solution, for both the symmetric and non–symmet...

متن کامل

Hp -version Discontinuous Galerkin Finite Element Methods for Semilinear Parabolic Problems

We consider the hp–version interior penalty discontinuous Galerkin finite element method (hp–DGFEM) for semilinear parabolic equations with mixed Dirichlet and Neumann boundary conditions. Our main concern is the error analysis of the hp–DGFEM on shape–regular spatial meshes. We derive error bounds under various hypotheses on the regularity of the solution, for both the symmetric and non–symmet...

متن کامل

Pressure-Velocity Coupled Finite Volume Solution of Steady Incompressible Invscid Flow Using Artificial Compressibility Technique

Application of the computer simulation for solving the incompressible flow problems motivates developing efficient and accurate numerical models. The set of Inviscid Incompressible Euler equations can be applied for wide range of engineering applications. For the steady state problems, the equation of continuity can be simultaneously solved with the equations of motion in a coupled manner using...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007